
Best Practices for Authenticating FileMaker ® /

Adobe® Flex™ Apps Using a PHP Proxy

FlexFM

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Contents | ii

Contents
Authenticating FileMaker / Adobe Flex Apps Using a PHP ProxyAuthenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

Contents

FlexFM

Abstract .

The Security Landscape .

Preparing for a Secure Web App .

Basic Access HTTP Authentication (and why it won’t work with Flex apps)

FlexFM .

Where is your code executed? .

Handling credentials during a user session .

PHP Sessions .

FMProxy .

Proxy Screening .

Examples .

 HTML Form Demo .
 Flex Demo .

Conclusion .

Glossary of Terms .

iii

1

4

6

7

9

10

11

13

16

18

19
24

29

30

www.soliantconsulting.com Abstract | iii

Web applications come with their own special set of security challenges. Any
good implementation takes these challenges into consideration and accounts
for the associated risks.

Responsible handling of user names and passwords by Web application
developers is probably less common than it should be. In this paper we’ll
review some Web security fundamentals, and look at some advantages of
implementing a proxy server. The proxy example we will look at is built for
FileMaker® Server and is tailored for Adobe® Flex™ applications, although the
principles can easily be applied to any Web client/server technology pairing.

The FileMaker suite of products has been a cornerstone of Soliant’s custom
software consulting practice. To further extend the capabilities of FileMak-
er’s products, we have been working on ways to implement Adobe Flex as a
FileMaker Custom Web Publishing client technology. In planning our ap-
proach to this endeavor, we decided to start with a light-weight implementa-
tion that allows Flex apps to connect directly to the FileMaker Web Publish-
ing Engine1, which is a REST-like RPC2 implementation. Thus, our FlexFM
package is able to parse the Web Publishing Engine’s XML output (fmresult-
set.xml) and can be used to make a direct connection to FileMaker Server.

We’ll look at some of the practical limitations with a direct Flex/FileMaker
connection, and when it makes sense to implement a proxy to overcome
these limitations. PHP is a natural choice for building a proxy because
FileMaker Server provides built-in support for PHP3.

1 http://www.fi lemaker.com/support/technologies/xml.html
2 http://en.wikipedia.org/wiki/Representational_State_Transfer#REST_versus_RPC
3 http://www.fi lemaker.com/support/technologies/php.html

Abstract
FMProxy is part of FlexFM,

an Open Source Project
Sponsored by Soliant Consulting

Fl
ex

FM

http://www.filemaker.com/support/technologies/xml.html
http://en.wikipedia.org/wiki/Representational_State_Transfer#REST_versus_RPC
http://www.filemaker.com/support/technologies/php.html

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy The Security Landscape | 1

The Security Landscape
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

When engineering a Flex or HTML application to interact with the FileMaker Custom Web Publishing API, you need to provide a
secure means by which a client computer can connect to a Web server over the public Internet, and you must be able to verify the
identity of the user before granting access to create, read, update, and delete information in your database.

A Web application must be capable of securely handling user credentials. It is very important that developers resist the temptation
to write custom encryption schemes or, worse yet, simply store user credentials in a clear text table. This is summed up well in a
post by Tom Moertel on his blog where he warns, “If you are storing passwords in a database, you are almost certainly making a
mistake.”4

The FileMaker suite of products offers two built-in ways to authenticate users. The first is to authenticate users against external
domain or local host accounts, absolving you (as application architect) of the responsibility for storing user credentials, and ensur-
ing that they are as secure as your enterprise domain security.

The second involves the built-in FileMaker user management capability that automatically manages an industry-standard salted
hash of user passwords for you. According to FileMaker security expert Steven H. Blackwell5, FileMaker’s key derivation func-
tion (PBKDF2) is based on a RSA Public-Key Cryptography Standard (PKCS #5)6. As summarized in Wikipedia, “PBKDF2 applies
a pseudorandom function, such as a cryptographic hash, cipher, or HMAC to the input password or passphrase along with a salt
value and repeats the process many times [...] to produce a derived key, which can then be used as a cryptographic key in subse-
quent operations. The added computational work makes password cracking much more difficult, and is known as key strength-
ening.” This level of encryption means that even for a database administrator with developer access, there is no practical way to
retrieve user passwords. If an attacker manages to gain physical access to a FileMaker file, it is conceivable he could hack the file
and replace password hashes for existing accounts with new hashes known to the attacker, but decrypting the stored hashes to
reveal the clear text of the passwords is beyond practical means.7

In other words, even if your server is physically breached, or backup files end up in the wrong hands, user passwords stored in

4 http://blog.moertel.com/articles/2006/12/15/never-store-passwords-in-a-database
5 http://www.fi lemakersecurity.com
6 http://www.rsa.com/rsalabs/node.asp?id=2127
7 http://www.google.com/search?q=crack+fi lemaker

Even with well-secured servers, it is crucial to
guard against interception of Web traffi c and to
avoid leaving anything of use to an attacker in
case of physical attack on client machines. It is
nearly impossible to create technological mea-
sures to protect users from frauds like phishing
and social engineering, but these are also very
real vulnerabilities to credential security, and
where this kind of attack is deemed to be a
threat, measures such as user training and appro-
priate Human-computer Interface design should
be employed to mitigate them.

http://www.google.com/search?q=crack+filemaker
http://www.filemakersecurity.com
http://blog.moertel.com/articles/2006/12/15/never-store-passwords-in-a-database
http://www.rsa.com/rsalabs/node.asp?id=2127

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy The Security Landscape | 2

FileMaker’s internal user hash are not as vulnerable as they would be if stored in clear text. FileMaker’s built-in user management
thus absolves the application developer of responsibility for encryption and security of user passwords. This is not to say that
such a breach would be fruitless for the attacker, as they might gain access to data by cracking a file if they could breach server or
backup security. But while this is an important subject, the focus of this paper is on the secure handling of user credentials,
not of data.

A cornerstone of the case made here is that
you should not try to roll your own user
management system; rather, leverage what
FileMaker provides. As an application archi-
tect, spend your security dollar on securely
handling credentials during the authentication
exchange (and the processes surrounding
password creation and recovery, should that
become necessary). See the sidebar on this
page for a brief discussion about options for
managing FileMaker user accounts. It’s unlikely
that you can or need to write a more secure
user management system than what FileMaker
has provided, which you can leverage with
relatively little effort. The same advice applies
regardless of what backend is being used for a
web application.

Given that FileMaker provides a built-in
secure means of storing account credentials
plus an API that defines the means by which
these credentials may be submitted, and sub-
sequently by which the data may be fetched
and manipulated via a Web server, we will
assume for the purpose of this paper that by
taking advantage of this, everything inside the
firewall is secured sufficiently. There are still
several distinct programming challenges with
regard to handling user credentials outside
the firewall. The primary security focus of
this paper is on proper handling of credentials
in this vulnerable window between the time
the user types into a login form and when the
Web server receives login information.

This is of particular importance if your application is using FileMaker’s external authentication with domain accounts, because
in this case, interception of the web application credentials by definition reveals user domain credentials. Even when not using
domain authentication, credential security must be taken seriously. Human nature dictates that users are prone to use the same
credentials across multiple applications, and hence, discovery of credentials for one application will often yield access to others
with which the user interacts.

In the most basic sense, there are three ways that credentials might be stolen by an attacker outside the firewall:

Interception
Between the client’s machine and the Web server, each request that travels on the open Internet might be copied to a log by
an attacker or careless administrator. It is important that any stream containing sensitive data, such as a clear text password be
encrypted so that it is of no use (for practical purposes) to anyone listening. We’ll look at setting up an encrypted connection
between client and host, and how to guard against accidental user circumvention.

Breach of Client Machine
If a user walks away from a computer while it is logged in, or otherwise fails to secure a client machine, an attacker can easily

In August of 2006 we created a demo app that demonstrates a self-
proxying PHP/FileMaker implementation. Web users may each create
a self-serve login account stored in FileMaker’s built-in account hash.
These user accounts do not have access to the main data fi le, so the
PHP session in combination with stored system credentials is used to
give proxy-access to valid users.

You can download the demo fi les from fl exfm.us/source-code/ and
inspect the way it has been designed to take advantage of session
proxy credentials such that the user accounts are only valid in the web
fi le, yet valid users may access data from the staff fi le. Look for the link
under Sample applications.

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy The Security Landscape | 3

gain access to the HTML cookies or Flash shared objects stored on the machine’s hard drive. A well-written Web application will
not store any sensitive information, such as a password, in clear text on the client machine. This ensures that even if a machine is
compromised, the attacker will not be able to retrieve the user’s credentials for the Web application. Of course, there is not much
we can do if a client machine becomes severely compromised. For example, a keylogger might be installed. This level of security is
beyond the control of a Web application architect.

Social Engineering and Phishing
In his 2002 book, The Art of Deception, Kevin Mitnick8, one of the world’s most well-known convicted hackers, describes how he
used “social engineering” — persuading individuals to release sensitive information to him — as opposed to technology, to breach
the security of the networks he attacked. Phishing9 is the similar practice of illegally luring people into disclosing sensitive informa-
tion, such as usernames and passwords, by spoofi ng a legitimate Web site. Aside from good Human-computer Interaction design
that helps users steer clear of social engineering and phishing attacks (which is beyond the scope of this paper), there is very little
we can do to prevent them with technology alone.

While server-side code is more resistant to external attacks than client-side code, Steven H. Blackwell, author of FileMaker Secu-
rity: The Book, reminds us, “Insider threats constitute the greatest danger to the Confidentiality, Integrity, and Availability of digital
assets. Insider attacks are the hardest to defend against; they cause the most damage; and, they cost the most to remediate.
That’s why FileMaker Security: The Book starts right off in Chapter One talking about the environment where these insiders work.”

10 While physical security of servers is beyond the scope of this paper, it is important to remember that trusted individuals can do
great mischief from the inside. For example, it would be trivially easy for someone with access to the Web server file system to
add a password logger or some other exploit, and it is also important to remember that vulnerabilities can be introduced by error,
lack of understanding, or lack of management mandate. Make sure to consider how important password security is in your applica-
tion, and carefully audit your internal vulnerabilities accordingly.

In the following sections we’ll look more closely at fundamental security considerations, such as enforcing SSL for sensitive con-
nections, and the risks inherent in HTML cookies and Flash shared objects. We’ll consider the inherent problems with basic access
HTML authentication, then we’ll look at PHP sessions, differences in security considerations for programming in PHP vs Flex
(server-side script interpreter vs client-side compiled binaries), and how to set up a PHP proxy for handling Flex authentication.

8 http://en.wikipedia.org/wiki/Kevin_Mitnick
9 http://en.wikipedia.org/wiki/Phishing
10 http://www.fmpug.com/members_download.php?fi lename=credentialexposureincwp.pdf&free=true

http://www.fmpug.com/members_download.php?filename=credentialexposureincwp.pdf&free=true
http://en.wikipedia.org/wiki/Kevin_Mitnick
http://en.wikipedia.org/wiki/Phishing

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Preparing for a Secure Web App | 4

Preparing for a Secure Web App
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

We’ve already touched on some of the inherent security challenges one faces when designing a public facing Web login system for
any application. These are the guiding principles we use when designing login systems for FileMaker or any other back-end system.

1. Don’t “roll your own” authentication scheme; instead leverage FileMaker’s.
Many developers and security experts concur that building a custom password system is a bad idea.

“If you are storing passwords in a database, you are almost certainly making a mistake.”

“Do you think you have a good reason for storing passwords in your database? If so, you’re probably
wrong.”

- Tom Moertel11, software developer

“No, really. Use someone else’s password system. Don’t build your own.”

“Most of the industry’s worst security problems (like the famously bad LANMAN hash) happened
because smart developers approached security code the same way they did the rest of their code. The
difference between security code and application code is, when application code fails, you fi nd out right
away. When security code fails, you fi nd out 4 years from now, when a DVD with all your customer’s
credit card and CVV2 information starts circulating in Estonia.”

- Thomas Ptacek12, Principal at Matasano Security

2. Never store or embed credentials, even “temporarily” on the client side, e.g. cookies.
Don’t store passwords in anything that is cached (cookies, Flash shared objects, or client-side code)

It is a serious security risk to store credentials in HTTP cookies13, Flash shared objects14, or in any code that will be delivered
to the client machine, such as a compiled Flex app. Any SWF file can easily be decompiled, and therefore, any stored credentials
inside the code could easily be discovered15.

“Storing authentication credentials in cookies is not a good idea, as cookies can be stolen through cross-
site scripting attacks or local access to the hard drive. Once cookies have been stolen, an attacker can
gain access to the vulnerable site and masquerade as a legitimate user. This vulnerability is enhanced
when authentication credentials are stored in clear text. In this situation, the username and password
can be obtained merely by viewing the cookie contents.”

- iDefense Labs PUBLIC ADVISORY: 06.10.02, Michael Sutton16

11 http://blog.moertel.com/articles/2006/12/15/never-store-passwords-in-a-database
12 http://www.matasano.com/log/958/enough-with-the-rainbow-tables-what-you-need-to-know-about-secure-password-
schemes/
13 http://en.wikipedia.org/wiki/HTTP_cookie
14 http://en.wikipedia.org/wiki/Local_Shared_Object
15 http://www.google.com/search?q=fl ash+decompiler
16 http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=61

http://www.google.com/search?q=flash+decompiler
http://www.matasano.com/log/958/enough-with-the-rainbow-tables-what-you-need-to-know-about-secure-password-schemes/
http://blog.moertel.com/articles/2006/12/15/never-store-passwords-in-a-database
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/Local_Shared_Object
http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=61

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Preparing for a Secure Web App | 5

3. Never transmit credentials or sensitive information in the clear; enforce SSL at the Web server level.

There is a lot of available documentation about SSL enforcement. It’s not that hard to implement. The first thing you will need
to do is get a certificate (SSL will work fine without it, but a third party certificate keeps browsers from displaying a certificate
warning to the user). Next you, or your Web server admin, will have to configure SSL on your Web server and install the certifi-
cate. Finally, you will need to create a rule or rules that rewrite any non-secure requests for URLs that will be transacting secure
information as SSL. This is so that users who type the URL manually without explicitly specifying HTTPS as the protocol will have
a seamless experience as their request is gracefully rewritten for the secure port on your server.

Note that it is particularly important to enforce SSL-only for your login page or pages, but you might consider it for your whole
Web app. In some ways it is easier to make a blanket rule that all traffic on your Web server will be redirected to the secure port.
There is a general assumption that this will negatively impact throughput, as all data is being encrypted and decrypted. But there is
a popular study done at NYU in 1998 that shows there is very little penalty for using encryption17. The study concludes: “We find
that secure Web servers perform well in comparison to non-secure servers. In particular, measurements show that on typical PCs
encrypted Web communications using SSL and RC4 can transfer data at speeds similar to non-encrypted HTTP. This bodes well
for electronic commerce.” In other words, there’s probably very little reason NOT to use SSL, although you must assess each case
on its own merits.

Depending on what type of Web server you are using, there are various options for converting requests on the default, non-
secure port to your secure one. You might employ Apache’s mod_rewrite or ISAPI_Rewrite for IIS.

You generally will be adding a rule or rules so that either the whole site or certain URLs trigger the rewrite. In Apache’s httpd.
conf file, a redirect that effects everything would look something like this:

RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (.*) https://%{HTTP _ HOST}%{REQUEST _ URI}

There is plenty on the Web to help you with your configuration needs. Just keep three things in mind before you start making
changes to your Web server config files. Backup, backup, and backup.

Suggested search terms:

http://google.com/search?q=ssl+certificate

http://google.com/search?q=redirect+http+to+https

http://google.com/search?q=mod_rewrite

http://google.com/search?q=ISAPI_Rewrite

17 http://www.cs.nyu.edu/artg/research/comparison/comparison.html

http://google.com/search?q=ssl+certificate
http://google.com/search?q=redirect+http+to+https
http://google.com/search?q=mod_rewrite
http://google.com/search?q=ISAPI_Rewrite
http://www.cs.nyu.edu/artg/research/comparison/comparison.html

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Basic Access HTTP Authentication | 6

Basic Access HTTP Authentication
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

FileMaker’s Web Publishing Engine (WPE) uses basic access authentication to validate HTTP request. For our purposes, this means
that Flex applications cannot effectively connect directly to a FileMaker WPE, unless it is configured to allow anonymous access
(hence requiring no authentication). This is not because it is impossible to do so, but because it is very difficult to do so securely
and seamlessly. Let’s look at why.

In the Wikipedia entry for basic access authentication18, there is a summary of advantages and disadvantages. Among the advan-
tages, the article points out that basic access authentication “is supported by all popular Web browsers.” There is a caveat to
this, however19; in short this is not completely true of Internet Explorer. With the combination of security restrictions that the
Adobe® Flash® Player framework has imposed, coupled with the limited IE implementation of basic access authentication, it is not
possible to authenticate directly to a FileMaker WPE with a Flex application running inside IE.

Furthermore, even inside of browsers that
still support the single built-in means of
passing basic access credentials from Flex,
if the server responds to the authentica-
tion request with “Unauthorized” (status-
code 401), there is no way to prevent the
browser from presenting the user with its
own login dialog superimposed your Flex
application (see picture).

One other important disadvantage Wikipe-
dia mentions is, “existing browsers retain
authentication information indefinitely.
HTTP does not provide a method for a
server to direct clients to discard these
cached credentials. This is a significant
defect that requires further extensions to
HTTP.” This means that apart from quitting the browser, there is no way to disconnect a browser agent connected directly with
basic access authentication.

18 http://en.wikipedia.org/wiki/Basic_access_authentication
19 The current version of Internet Explorer will not pass through credentials as part of the URL. FireFox and Safari both
continue to support this technique, despite the risk that is poses to credential security if misused.

http://en.wikipedia.org/wiki/Basic_access_authentication

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy FlexFM | 7

FlexFM
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

Clearly these add up to a series of challenges which call for a different technique in most cases. We’ll get into that shortly, but first
a bit of background.

When Soliant originally built the “simple” classes in the FlexFM package20 for connecting Flex applications directly to FileMaker’s
WPE, we implemented the request part of the HTTP transaction via POST, the same way most PHP classes do it, namely, by
inserting base64 encoded credentials into the HTTP header. This is what that can look like in a PHP class:

if (!(empty($this-> _ username) && empty($this-> _ password))) {
 $post .= "Authorization: Basic ".
 base64 _ encode($this-> _ username.":".$this-> _ password)."\r\n";
 }

This is how that used to look (note the past tense) in FlexFM's ActionScript:

 public function basicAuthentication(username:String,password:String):void {
 var encoder:Base64Encoder = new Base64Encoder();
 encoder.encode(username + ":" + password);
 var value:String = encoder.drain();
 this.addHeader("Authorization","Basic " + value);
 }

However, as of this writing, this is what how code now looks in the FlexFM sources:

 // Flash Player 9 took away our ability to modify the Authorization header here,
 // so we have created a PHP proxy.
 /*
 public function basicAuthentication(username:String,password:String):void {
 var encoder:Base64Encoder = new Base64Encoder();
 encoder.encode(username + ":" + password);
 var value:String = encoder.drain();
 this.addHeader(“Authorization”,”Basic “ + value);
 }
 */

As you may infer from the fact that the second version of the FlexFM code is completely commented out, our original light-weight
approach of connecting Flex apps directly to FileMaker hosts was disabled by the Flash Player team21, most likely to “protect us
from ourselves”. In any case, since there is no longer any built-in way to modify the Authorization header of a POST request, we
discussed rewriting the HTTPService class in ActionScript as Abdul Qabiz has22. The trouble is, we assumed there was a risk that
future changes to the Flash Player platform might make this fruitless; and furthermore, we saw some advantages to handing off the
entire payload to a server-side application and re-POSTing it from there. A proxy affords advantages in terms of both security and
performance optimizations on the server side.

The solution we settled on was to build a simple but very flexible PHP class called FMProxy that understands FlexFM’s WPE

20 http://fl exfm.us
21 https://bugs.adobe.com/jira/browse/SDK-14481
22 http://www.abdulqabiz.com/blog/archives/fl ash_and_actionscript/http_authentica.php

http://flexfm.us
http://www.abdulqabiz.com/blog/archives/flash_and_actionscript/http_authentica.php
https://bugs.adobe.com/jira/browse/SDK-14481

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy FlexFM | 8

requests. Then we added a proxy property to FlexFM’s FMServer class. The PHP proxy can simply receive FlexFM’s form-based
credentials and add them to the header on the server side before passing the request through to the WPE, but as already men-
tioned, it also presents some powerful additional possibilities which we’ll discuss in detail later.

FlexFM can still connect directly to a specified FileMaker host without a proxy, and if you provide credentials, it will attempt to
transmit them to the host by adding them to the URL. This is not recommended for several reasons as mentioned in the previous
section, such as, it simply won’t work with credentials on Internet Explorer and if credentials passed as part of the URL are not
valid, there is no way to prevent a 401 response from the host from being presented on top of your Flex app. Using FlexFM with-
out FMProxy remains an option, though, for those cases in which it is useful. FMProxy is covered in more detail later.

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Where is your code executed? | 9

Where is your code executed?
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

Flex apps are .swf binaries which are downloaded and then executed in Flash Player on the client side. As mentioned earlier, this
means anyone can decompile a SWF and examine its sources in clear text. So as previously mentioned in regard to cookies and
Flash shared objects, we wouldn’t want to store credentials in the source code for a bad guy to find. You should embed in the Flex
source only those things that pose no security threat if discovered by an attacker. This is known as “security by design” and stands
in contrast to “security by obscurity.” A system relying on security by obscurity may have theoretical or actual security vulnerabili-
ties, but its designers believe that the flaws are not likely to be discovered, and therefore attackers are unlikely to exploit them.
Security by design usually means that everyone is allowed to know and understand the design, because it is secure. In real world
applications, it is likely that elements of both strategies will be employed, but particularly in parts of the code in which it is trivially
easy for anonymous users to explore. It would be irrational to imagine that the code is truly obscure. It is critical that security by
design strategies be employed for client-side code.

The main difference between PHP and ActionScript has nothing to do with structure and syntax of the script languages them-
selves. The difference lies in where the code is executed. While it is possible for PHP to be run from a command line interface or
in standalone graphical applications, it is most common for PHP to be deployed on a Web server. When PHP scripts are requested
via the Web server, they are run through a parser and return only the results. As described in Wikipedia, “PHP primarily acts as a
filter, taking input from a file or stream containing text and/or PHP instructions and outputs another stream of data.”23

The fact that a properly configured Web server running PHP serves as a filter is very important. Since the PHP code itself is never
sent to the client for execution, unlike in a Flex app, it is possible to define constants which cannot be decompiled by an attacker,
unless the attacker manages to breach the server in such a way as to be able to retrieve the PHP files without them being filtered
by the parser. Generally speaking, this is far more difficult than simply gaining a user’s credentials in some manner (limited to social
engineering or some other fraud, if you have designed your Web application securely). This being the case, it is arguably advisable
to restrict the user login account privileges to the bare minimum needed to prove that the user is authorized to use the system
but not access data. This is commonly done in sophisticated PHP applications by self-proxying an authenticated user session.

After the user has established an authenticated session, subsequent requests from that valid session can be made using stored
system credentials that are defined to provide the elevated level of access an authenticated user needs to interact with the system.
When this technique is employed, if someone trying to hack the application finds a way in other than the application interface (for
example, via a FileMaker Pro client or via direct WPE queries), the only data the hacker might be able to access using stolen user
credentials are user-specific preferences which the login account is permitted to read and write during the login transaction. Di-
rect queries into tables the user would ordinarily interact with when logged into the application will fail because the user account
is not directly authorized to access those, only the proxy system account is.

23 http://en.wikipedia.org/wiki/PHP

http://en.wikipedia.org/wiki/PHP

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Handling credentials during a user session | 10

Handling credentials during a user session
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

Like other client-side technologies, Flex permits objects to be instantiated, hold strings (and other data types) in memory for the
duration of the application session, which are then destroyed when the session is ended. There is no technical reason that we
couldn’t take advantage of this fact in order to hold the user’s login credentials for the duration of the session and transmit login
credentials as part of every HTTP transaction.

Assuming that the transactions are all conducted over SSL, this strategy doesn’t present an inherent threat; but, doing so means
that you are continually passing the user credentials with every transaction, which leaves open the possibility that an error or bug
may expose the credentials. Furthermore, user accounts would need to be granted enough access to perform whatever actions
that may be needed in the course of an authenticated user working with the application. As such, if some user credentials were
discovered or guessed by a bad guy, those credentials might be of some use to him in looking for ways to circumvent the Web ap-
plication and make direct calls into the database, perhaps finding an unforeseen vulnerability.

As alluded to earlier, we’ll look at a strategy, in which the application architect allows the user account to serve only as a means
of proving that the person logging in is permitted to interact with your Web application in the prescribed manner, but is of no use
to an attacker who may try to use the credentials for direct access to the data tables. Limiting the user credentials to proving they
are who they claim to be, but with access restricted to stored account preferences, means that a great number of possible direct
attacks are eliminated, as opposed to a design that uses the same credentials to interact with the database. Using proxy system
credentials reduces the chance of accidental mishandling of user credentials and reduces the usefulness of those credentials should
they be obtained by an attacker.

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy PHP Sessions | 11

PHP Sessions
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

PHP implements a special kind of global variable in the server’s memory space called $ _ SESSION. When a session is initially
created, it is assigned a unique session ID by the host. Session variables may be set and retrieved only by scripts running in the
context of that host when called by a connection which provides the session ID. The session ID is usually stored in a cookie but
will be propagated in the URL if cookies are
disabled. A script running on the server that
looks for or tries to set a value in $ _ SES-
SION will be able to access anything that
may exist under the session ID it provides
for that host. Any page (PHP script) on
that same host has access to those values
associated with the session ID. This over-
comes the stateless nature of Web pages
by allowing distinct calls to the Web server
to cohesively share variable data in a secure
way. Since the host holds the values, it does
not have to trust the client with them. The
client will know the session ID, but if the
scripts don’t need to return the values in the
session variables, those remain completely
hidden. From the user side, it would be
impossible to even know what the variable
names are, much less the contents of them,
unless of course the PHP application reveals
something by design.24

As suggested in the previous section, PHP
sessions provide an application architect
with a means of only handling user credentials
during the authentication transaction and then dropping them like a hot potato. Rather than holding the credentials in memory on
the client side, or even in PHP session variable (memory on the server side), and resubmitting them each time there is a database
transaction, it is easy to create a login process that receives the username and password from an encrypted form submission.
When the login script receives credentials from the submitting form, it will in turn attempt to log into FileMaker’s WPE with them.
If the response is affirmative, the login script next requests a brand new session ID from the server, and sets a session variable
(such as $ _ SESSION['loggedin']) which any other script in the application will require to be true before considering any
other instructions. The application developer might also consider loading some user preferences and the user name into session
variables (e.g. $ _ SESSION['username']) based on the affirmative response.

What this means is that from the point that the authentication transaction is completed affirmatively, the application can trust that
session and act on behalf of that user, and it can do so without needing that user’s literal account credentials, which were simply
discarded at the completion of the authentication transaction. For each database interaction, PHP can present FileMaker Server
with system credentials that have been stored as constants in a config file.

Note: Since the FileMaker will mark record the creation and modification account as “System”, for example, creation and modifi-
cation events triggered by the logged-in user can be stored by PHP in FileMaker fields as record attributes.

While there are a few important precautions to consider when employing PHP sessions, it is possible to use them in a secure
manner. The two fundamental session vulnerabilities are known as “session fixation” and “session hijacking”. Session security is a

24 http://www.w3schools.com/PHP/php_sessions.asp

http://www.w3schools.com/PHP/php_sessions.asp

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy PHP Sessions | 12

sophisticated topic, and there are many good resources available for understanding how to keep sessions secure,
so we’ll just summarize the concepts briefly.

Fixation is the simplest method of fraudulently obtaining a valid session identifier by tricking a user into visiting the target server
from a rigged third party Web server. While it’s not very difficult to defend against, if your session mechanism consists of noth-
ing more than session _ start(), you are vulnerable. The attacker can attempt to dictate the victim’s session ID by appending
a name value pair to the URL with a session value determined by the attacker. If the session fixation is successful, the attacker
then knows the victim’s session ID for the target domain, since the attacker himself set it. When the victim authenticates to the
target application, the attacker hijacks that session and interacts with the target application just as if the attacker were sitting at
the victim’s computer. To defend against fixation, it is important to regenerate the session identifier whenever there is any change
in privilege level (for example, after verifying a username and password). Doing so will practically eliminate the risk of a successful
session fixation attack. Other kinds of hijacking exploits are more difficult to construct and more difficult to defend against. Make
sure you study and understand the risks. More information can be found in many places. Two excellent places to start are the PHP
Security Consortium25 and The PHP Group itself26.

With the preceding credential-handling guideposts and security considerations in mind, we are ready to look at some implementa-
tion examples.

25 http://phpsec.org/projects/guide/4.html
26 http://us.php.net/manual/en/session.security.php

http://phpsec.org/projects/guide/4.html
http://us.php.net/manual/en/session.security.php

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy FM Proxy | 13

FM Proxy
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

If it hasn’t become apparent by now, the trick to securely authenticating a FileMaker Flex app is to authenticate a proxy PHP app.
This principle can be employed regardless of what your presentation technology is. Even if you are serving up pure HTML with
PHP, it’s still good to think of the authentication transaction as a one-time event which validates the user session, allowing the ap-
plication to subsequently interact with the database using self-proxying system credentials.

To facilitate this for FlexFM, Soliant has created a PHP class called FMProxy27. This class is very simple but very powerful. Strictly
speaking, it is agnostic as to what technology addresses it, as it accepts a POST payload. Later we’ll look at an HTML form that is
constructed to POST payloads in the format FMProxy expects. In its most basic implementation, an FMProxy looks like this:

<?php

require _ once('FMProxy.php'); // require the file
$myProxy = new FMProxyRequest(); // the constructor parses $ _ POST
$myProxy->execute(); // re-submit the request to the FileMaker host
echo $myProxy->result; // echo the results to the requesting agent

?>

A proxy as simple as this does not employ sessions. In fact, it doesn’t really do anything except faithfully pass through any request
it receives and return the raw reply. Nevertheless, there is a dramatic difference between submitting a form request directly to
FileMaker’s WPE and a pass-through implementation of FMProxy. In particular, the proxy suppresses basic access authentication
from flowing back to the user (see figure 2 on page 6). Even if authentication is successful, the user’s browser (or Flash Player) will
not become authenticated via basic access. Furthermore, this works with Internet Explorer. A FlexFM app pointed at the above
proxy would need to submit credentials each time, but this is a big step in the right direction and is a perfectly valid use in some
situations. The FlexFM objects might look something like this:

 <soliant:FMServer id="myServer"
 host="myfmhost.com"
 proxy="http://mywebhost.com/proxy.php" />
 <soliant:FMRequest id="myQuery"
 server="{myServer}"
 db="theDB" layout="webLayout"
 username="{myUsername.text}"
 password="{myPassword.text}"
 result="myQueryHandler();"/>

Notice that myQuery is configured to always pass the string in the myUsername and myPassword objects, which we’ll imagine are
TextInput objects from the login screen. Unless cleared or modified by the application, the clear text values in these TextInput
objects will persist in memory on the client side until the SWF is closed. Each time a myQuery is sent, the credentials will be sent
in clear text (thus this app should always enforce SSL); however, it is entirely within the control of the application developer to
clear them, in effect logging out the user. For example, we could give the users a Log Out button. Furthermore, when the browser
window containing the Flex app is closed (as opposed to exiting the whole browser), the user is automatically logged out. As pre-
viously mentioned, with basic access authentication directly from the browser, this is not possible.

While this is interesting and very useful, it doesn’t begin to tap the potential of the proxy. Here is some pseudo code that begins
to show the possibilities:

27 http://fl exfm.us/source-code/

http://flexfm.us/source-code/

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy FM Proxy | 14

<?php

session _ start();

if (@$ _ GET['logout']==1){

 unset($ _ SESSION['isLoggedIn']);

session _ destroy();

 die();

}

require _ once('includes/FMProxy.php');

require _ once('includes/FileMaker.php');

$systemUsername = 'System';

$systemPassword = 'f7d#qKm8';

$myProxy = new FMProxyRequest();

if (@$ _ SESSION['isLoggedIn']=== true){

$myProxy->username = $systemUsername;

$myProxy->password = $systemPassword;

$myProxy->execute();

echo $myProxy->result;

}else {

// If the session is not recognized, we turn the payload into a FileMaker.php request

// and attempt to use the submitted credentials to pass an authentication challange.

unset($myProxy->commandArray); // first we destroy any submitted commands

$myFM = new FileMaker($targetDB,$myProxy->host,$myProxy->username,$myProxy->password);

$findReq =& $myFM->newFindCommand($targetLay);

$findReq->addFindCriterion($targetField, '=='.$myProxy->username);

$result = $findReq->execute();

if (FileMaker::isError($result)){

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy FM Proxy | 15

// Login Failed

// echo error xml

} else {

// Login Success (NOTE: elevating privileges so regenerate the session ID)

session _ regenerate _ id();

$ _ SESSION['isLoggedIn'] = true;
$ _ SESSION['username'] = $record[0]->getField(' _ ka _ username');
// etc.
// echo success xml

 }

}

// when using a html form for testing we can add a parameter to tell the proxy

// to echo out some extra debug info

if (@$ _ GET['verbose']===1){

 echo '<pre>'; print _ r($myProxy->commandArray); echo '</pre>';

 echo 'Proxy Command Override: '.$command.'

';

}

// execute the request with any new, overridden or removed commands and echo the result.

$myProxy->execute();

echo $myProxy->result;

?>

In this proxy implementation, there are several new features. Perhaps most obvious is the use of the PHP session. By invoking
any session that may exist on the client for our host, and then before doing anything else, we allow for active management of the
logged-in state of the proxy, testing to see if the proxy is being called with a parameter that indicates a logout request.

When the logout parameter is not present, the next step is to include both FMProxy.php and FileMaker.php so that we’ll have ac-
cess to the classes in them.

For the purpose of this example, we are defining the system credentials as script variables inside the proxy rather than inside a
config file. Instantiating FMProxy automatically unpacks the POST payload into the FMProxy object.

Next we test to see if we have an existing logged-in state for the current session. If so, we insert the system credentials into the
FMProxy object, execute it, and echo the results. Simple as that.

However, if the session is not logged in, we repack the submitted payload into a completely different FileMaker.php request object
and submit a pre-configured authentication challenge instead. This begins to show the significance of this technique.

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Proxy Screening | 16

Proxy Screening
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

By design, a proxy is intercepting every request, allowing us to read and potentially censor its mail, so to speak. There is no reason
to expose the FileMaker WPE outside the firewall at all. As long as the proxy server can connect to it, there is no reason to allow
a direct connection from other sources. This allows you to tailor the proxy very pessimistically, allowing only those methods you
explicitly need. For example, you might decide that there is never a reason for your proxy to access anything other than the find,
new, and edit commands. You don’t want to allow WPE queries to execute other commands, particularly findany or findall. You
could easily build an array of disallowed commands and strip any of those out of a submitted request.

$disallowedWPECommands = array (
 '–dbnames'=>null,
 '–delete'=>null,
 '–dup'=>null,
 '–findall'=>null,
 '–findany'=>null,
 '–findquery'=>null,
 '–layoutnames'=>null,
 '–scriptnames'=>null,
 '–view'=>null);

foreach ($disallowedWPECommands as $name=>$value){
 if (array _ key _ exists($name, $theCommandVars)){
 unset($theCommandVars[$name]);
 }
}

This is an example that illustrates the concept of using screening to strip queries. It could certainly be argued that there are better
ways to restrict certain behaviors, such as defining the database privilege set properly in the first place. Furthermore, it is relative-
ly unlikely that someone would be motivated enough to try to hack the proxy in this way (build his or her own POST payload that
conforms to the FMProxy signature). To count on the second point would be to fall back on security by obscurity, and in our initial
security considerations we set out to rely on security by design, especially for the public facing components of the system. Follow-
ing a security by design strategy, it follows that where possible we should disarm any methods that are not required and make it as
difficult as possible even for an attacker armed with the complete specs for the application.

Let’s have a look at a much more practical screening example in which we override queries. Imagine that you are designing a
system that will employ the single-challenge session model we proposed earlier. In this design, the user will authenticate with his
or her credentials once, and queries will subsequently be done with proxy system credentials. Our requirements dictate that we
restrict users to only those records that they created. With proxy screening, we can quite easily accommodate this.

To do so, we would need to know the name of the restricted table and the field which contains the username. During the initial
login process, we will have already validated the username and stored it in a session variable. Every record created by the user will
be marked with this attribute, and our requirements dictate that records in this table must always have this correlation, regardless
of whether a record is being created, edited, deleted, or searched for.

Using simple parsing techniques, rather than stripping commands as in the previous example, we can force additional name-value
pairs onto the command string. FMProxy automatically explodes the command string into an array. If we simply add a new element
to that array, and then repack that array as a command string, any submitted command that omitted the user name limiter would
have it added, and any command that attempted to pass an alternate value would simply be overwritten with the legal one.

$theCommandVars[' _ ka _ username']= $ _ SESSION['username'];

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Proxy Screening | 17

These examples merely touch the surface of what can be achieved by using a proxy to enhance security. When designing your next
Web app for FileMaker Server, consider employing a proxy and a pessimistic approach. This will put you explicitly in control of the
legal methods to address your database and reduce the opportunities of unforeseen exploits.

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 18

Examples
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

As alluded to previously, FMProxyRequest’s constructor unpacks whatever $_POST variable the form submits, looking for the
specific signature defined in FlexFM. Here is the constructor for FMProxy:

/**
 * Constructor
 * @return void
 */
function _ _ construct(){

if (@$ _ POST['Host']!=null){
$this->host = $ _ POST['Host'];

 }
 if (@$ _ POST['Protocol']!=null){
 $this->protocol = $ _ POST['Protocol'];
 }
 if (@$ _ POST['Port']!=null){
 $this->port = $ _ POST['Port'];
 }
 if (@$ _ POST['FmiUri']!=null){
 $this->fmiUri = $ _ POST['FmiUri'];
 }
 if (@$ _ POST['Username']!=null){
 $this->username = $ _ POST['Username'];
 }
 if (@$ _ POST['Password']!=null){
 $this->password = $ _ POST['Password'];
 }
 if (@$ _ POST['CommandString']!=null){
 $this->commandString = $ _ POST['CommandString'];
 $this->commandArray = $this->explodeNameValueString($ _ POST['CommandString']);
 }
 if (@$ _ POST['ProxyConfig']!=null){
 $this->proxyConfigArray = $this->explodeNameValueString($ _ POST['ProxyConfig']);
 }
 if (@$ _ POST['ProxyParams']!=null){
 $this->proxyParamsArray = $this->explodeNameValueString($ _ POST['ProxyParams']);
 }
}

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 19

HTML Form Demo

The following example demonstrates a proxy being addressed by a simple HTML form which conforms to the FMProxy signature.
The proxy is defined to initially ignore the submitted commands if the session has not been authenticated. Once authenticated,
the proxy will look for a specific argument in the optional ProxyParams variable. If it finds FullSearch=yes, it will not override the
submitted query with a username limiter. Otherwise it will actively force all commands to include the username as part of the
constraint.

The default configuration of the
form.

Note: The ProxyParam is included in FlexFM
for convenience and fl exibility, but it is not
advisable to use it as the basis for passing any-
thing other than options which are not tied to
security. The ProxyParams are subject to being
overridden, as we are doing in this example.

After clicking Submit with blank
credentials, we get an HTTP 401:
Forbidden error (not a FileMaker

401: No records found).

1

2

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 20

Fill in the form with valid credentials
for “Lily Small” and a command
string which calls for records con-

taining “Frank” in the name

Credentials are valid, but since the
session was new, the proxy ignored
the submitted query and replaced it

with a predefined search for the authenti-
cated username.

3

4

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 21

Now that we have an authenticated
session, we’ll go back and resubmit
the query for “Frank” but leave the

credentials blank. Note the ProxyParam
FullSearch=no.

Our query is answered, but the File-
Maker Web Publishing Engine error
code is 401. No records match this

query. This is because the proxy’s default
search is overriding the command string
with a username limiter, and there are no
records containing “Frank” in the name
owned by “lsmall”.

5

6

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 22

Switch the ProxyParam to
FullSearch=yes and submit the same
query, again with no credentials.

The query comes back with 11
records matching “Frank” this time
because the search was passed

through unaltered.

Remember: The ProxyParam was included in
FlexFM for convenience and fl exibility, but it is
not advisable to use it as the basis for passing
anything other than options which are not tied
to security. The ProxyParams are subject to be-
ing overridden, as we are doing in this example.

7

8

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 23

Finally, let’s look at what happens
when we tell the proxy to log us
out. Clicking the logout link calls

the proxy with an extra argument which
invalidates the session.

Going back to the form and submit-
ting it without credentials results in
the HTTP 401 error again.

9

10

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 24

Flex Demo

Here is a sample Flex login application built for the same proxy used by the HTML form in the previous demo.

The initial screen presents a logged
out state with a form that will sub-
mit credentials to the proxy.

Upon submitting valid credentials,
the user record is returned, which
includes details such as user full

name and is displayed in a welcome mes-
sage.

1

2

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 25

Running the identical search with the
other button returns three results
instead of one, because the proxy

has been instructed not to add the search
limiter. The ActionScript function for the full
search button looks like this:

public function
doFullFind(user:String): void {
 mySearch.proxyParams = "FullSearch=yes";
 mySearch.query = "studentName _ c=" + user + "&-find&-max=5";
 mySearch.execute();
 }

The same two search functions op-
tions are presented here as were
shown in the previous demo. The

restricted search will only return records
that the logged-in user owns. Obviously you
wouldn’t really use a client-side criteria to
base this restriction on. A proxyParam is
used here to illustrate the concept. The Ac-
tionScript function for the restricted search
button looks like this:

public function doFind(user:String):
void {
 mySearch.proxyParams = "FullSearch=no";
 mySearch.query = "studentName _ c=" + user + "&-find&-max=5";
 mySearch.execute();
}

4

3

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 26

To illustrate the developer control
over the PHP session, the Flex demo

has two logout buttons which respectively
run these ActionScript functions:

public function doLogout():void {
 myLogout.send();
 currentState = "";
 message.text = "Logged Out"
 }

 public function doFakeLogout():void {
 currentState = "";
 message.text = "Not really Logged Out"
 }

myLogout is defined in the MXML like this:

<mx:HTTPService id="myLogout" url="http://shn.serveftp.net/ProxyLogin/proxy.php?logout=1" />

When you run the fake logout, it
clears the logged in display state,
and the password object can plainly

be seen to have been cleared. But if you
click login again, it takes you right back into
the app with no password. This is because
the PHP session is still active. To destroy
it, the real logout button tells the proxy to
destroy the session.

5

6

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 27

Here is the complete source for the demo app:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
 xmlns:soliant="com.soliantconsulting.flexfm.simple.*">

 <soliant:FMServer id="myServer" host="shn.serveftp.net"
 proxy="http://shn.serveftp.net/ProxyLogin/proxy.php" />
 <soliant:FMRequest id="myLogin" server="{myServer}" db="pusd _ oe _ web" layout="web _ applicants _ login"
 username="{myUsername.text}" password="{myPassword.text}" query="-findany" result="loginHandler();"/>
 <soliant:FMRequest id="mySearch" server="{myServer}" db="pusd _ oe _ web" layout="web _ applicants _ login" />
 <mx:HTTPService id="myLogout" URL="http://shn.serveftp.net/ProxyLogin/proxy.php?logout=1" />

 <mx:VBox id="logoutState">
 <mx:Text text="Username" id="text2"/>
 <mx:TextInput id="myUsername" width="185"/>
 <mx:Text text="Password" id="text1"/>
 <mx:TextInput id="myPassword" displayAsPassword="true" enter="doLogin();" width="185"/>
 <mx:HBox>
 <mx:Button id="login" label="Login" click="doLogin();"/>
 <mx:CheckBox id="checkBox" label="Mask Clear Text:" labelPlacement="left" selected="true"
 change="myPassword.displayAsPassword = checkBox.selected;" />
 </mx:HBox>
 </mx:VBox>

 <mx:Text id="message"/>

 <mx:states>
 <mx:State name="LoggedIn">
 <mx:RemoveChild target="{logoutState}"/>
 <mx:AddChild position="lastChild">
 <mx:VBox horizontalAlign="center" id="loginState">
 <mx:HBox>
 <mx:Button id="fakelogout" label="Fake Logout" click="doFakeLogout();"/>
 <mx:Button id="logout" label="Logout" click="doLogout();"/>
 </mx:HBox>
 <mx:DataGrid id="myResult" dataProvider="{mySearch.lastResult.records}" width="400">
 <mx:columns>
 <mx:DataGridColumn dataField=" _ ka _ username" headerText="Login Name" width="80" />
 <mx:DataGridColumn dataField="studentName _ c" headerText="Student Name" />
 </mx:columns>
 </mx:DataGrid>
 <mx:Text text="Search Student Names"/>
 <mx:TextInput id="searchTerm" enter="doFullFind(searchTerm.text);"/>
 <mx:HBox>
 <mx:Button id="search" label="Restricted Search" click="doFind(searchTerm.text);"
 toolTip="This button runs the exact same search, but no matter what you
 search for, it will only return records which match the search criteria
 AND match the logged in account name."/>
 <mx:Button id="searchFull" label="Full Search" click="doFullFind(searchTerm.text);"
 toolTip="This button submits an unrestricted search in the Name column
 of the user table."/>
 </mx:HBox>
 </mx:VBox>
 </mx:AddChild>
 </mx:State>
 </mx:states>

<mx:Script>
 <![CDATA[

 public function doLogin():void {
 message.text = "Logging you in...";
 myLogin.execute()
 }

 public function loginHandler():void{
 var errorCode:int = myLogin.lastResult.error;
 myPassword.text = "";
 if (errorCode==0){
 currentState = "LoggedIn";

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Examples | 28

 message.text = "Welcome "+myLogin.lastResult.records[0]['studentName _ c'];
 } else {
 message.text = "Error: "+myLogin.lastResult.error;
 }
 }

 public function doFind(user:String): void {
 // Obviously you wouldn't really use a client-side criterion to base this restriction on.
 // A proxyParam is used here to illustrate the concept.
 mySearch.proxyParams = "FullSearch=no";
 mySearch.query = "studentName _ c=" + user + "&-find&-max=5";
 mySearch.execute();
 }

 public function doFullFind(user:String): void {
 mySearch.proxyParams = "FullSearch=yes";
 mySearch.query = "studentName _ c=" + user + "&-find&-max=5";
 mySearch.execute();
 }

 public function doLogout():void {
 myLogout.send();
 currentState = "";
 message.text = "Logged Out"
 }

 public function doFakeLogout():void {
 currentState = "";
 message.text = "Not really Logged Out"
 }
]]>
</mx:Script>

</mx:Application>

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Conclusion | 29

Conclusion
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

While no Web application is 100% secure, it is possible, with a little forethought, to apply some best practices and signifi cantly
reduce the vulnerability of your Web login systems. Resist the temptation to write custom user authentication rubrics. Rarely
handle user credentials in clear text, and never store them in cookies or shared objects on the client side. Transmit all sensitive
information, especially user credentials, in encrypted streams. Take advantage of PHP’s session management and server-side fi lter-
ing nature to employ a proxy and reduce the number of potential vulnerabilities in your system. Proxying of some form is a widely
used best practice for permitting web apps access to internal databases, or for permitting external access to internal web apps.28

Password.
Invisible in my stream,
bound for server’s salted hash.

28 http://en.wikipedia.org/wiki/Reverse_proxy

http://en.wikipedia.org/wiki/Reverse_proxy

FlexFM

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Glossary of Terms | 30

Glossary of Terms
Authenticating FileMaker / Adobe Flex Apps Using a PHP Proxy

Term Defi nition URL

401 (FileMaker) When returned by FileMaker, this error code means, “No records match
the request”

http://www.fi lemaker.com/
help/21a-FMP_error%20
codes.html

401 (HTTP) When returned in an HTTP transaction, this error code indicates the
request contains bad syntax or cannot be fulfi lled. The 4xx class of
status code is intended for cases in which the client seems to have erred.
Similar to 403 Forbidden, but specifi cally for use when authentication is
possible but has failed or not yet been provided. See Basic access authen-
tication.

http://en.wikipedia.org/wiki/
List_of_HTTP_status_
codes#4xx_Client_Error

ActionScript In June 2006, ActionScript 3.0 debuted with Adobe Flex 2.0 and its cor-
responding player, Flash Player 9. ActionScript 3.0 was a fundamental
restructuring of the language, so much so that it uses an entirely different
virtual machine than its predecessor.

http://en.wikipedia.org/wiki/
ActionScript

API An application programming interface (API) is a source code interface
that an operating system, library or service provides to support requests
made by computer programs.

http://en.wikipedia.org/wiki/
API

Basic Access In the context of an HTTP transaction, the basic access authentication is
a method designed to allow a web browser, or other client program, to
provide credentials – in the form of a user name and password – when
making a request.

http://en.wikipedia.org/wiki/
Basic_access_authentica-
tion

Class In object-oriented programming, a class is a programming language con-
struct used to group related attributes and methods.

http://en.wikipedia.org/wiki/
Class_%28computer_sci-
ence%29

Clear Text In data communications, cleartext is the form of a message or data which
is in a form that is immediately comprehensible to a human being without
additional processing.

http://en.wikipedia.org/wiki/
Clear_text

Cookie HTTP cookies, or more commonly referred to as Web cookies, tracking
cookies or just cookies, are parcels of text sent by a server to a web cli-
ent (usually a browser) and then sent back unchanged by the client each
time it accesses that server.

http://en.wikipedia.org/wiki/
HTTP_cookie

Credentials Credentials in information systems are widely used to control access to
information or other resources. The classic combination of a user ac-
count number or name and a secret password is a widely-used example
of IT credentials.

http://en.wikipedia.org/wiki/
Credentials#Information_
technology

http://en.wikipedia.org/wiki/Credentials#Information_technology
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/Clear_text
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/ActionScript
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes#4xx_Client_Error
http://www.filemaker.com/help/21a-FMP_error%20codes.html

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Glossary of Terms | 31

FileMaker Pro FileMaker Pro is a cross-platform database application from FileMaker
Inc. (a subsidiary of Apple Inc.), known for its combination of power and
ease of use. It is also noted for the integration of the database engine
with its GUI-based interface, which allows users to modify the database
by dragging new elements into the layouts/screens/forms that provide the
user interface. This results in a “quasi-object” development environment
of a kind that is still largely unique in the “industrial strength” database
world.

http://en.wikipedia.org/wiki/
Filemaker_Pro

Flash Player The Adobe Flash Player is a widely distributed proprietary multimedia
and application player created and distributed by Macromedia (a division
of Adobe Systems). Flash Player runs SWF fi les that can be created by
the Adobe Flash authoring tool, by Adobe Flex or by a number of other
Macromedia and third party tools.

http://en.wikipedia.org/wiki/
Flash_player

Flex Adobe Flex is a collection of technologies released by Adobe Systems for
the development and deployment of cross platform, rich Internet applica-
tions based on the proprietary Adobe Flash platform.

http://en.wikipedia.org/wiki/
Adobe_Flex

Form A webform on a web page allows a user to enter data that is, typically,
sent to a server for processing and to mimic the usage of paper forms.
Forms can be used to submit data to save on a server (e.g., ordering
a product) or can be used to retrieve data (e.g., searching on a search
engine).

http://en.wikipedia.org/wiki/
Html_form

Framework In computer programming, an application framework is a software frame-
work that is used to implement the standard structure of an application
for a specifi c operating system. Object-oriented programming techniques
are usually used to implement frameworks such that the unique parts of
an application can simply inherit from pre-existing classes in the frame-
work.

http://en.wikipedia.org/wiki/
Application_framework

Hash In cryptography, a cryptographic hash function is a transformation that
takes an input and returns a fi xed-size string, which is called the hash
value.

http://en.wikipedia.org/wiki/
Cryptographic_hash_func-
tion

HTTP Hypertext Transfer Protocol (HTTP) is a communications protocol for
the transfer of information on the intranet and the World Wide Web.

http://en.wikipedia.org/wiki/
HTTP

HTTP Basic Access See Basic Access. na

HTTP Header HTTP Headers form the core of an HTTP request, and are very impor-
tant in an HTTP response. They defi ne various characteristics of the data
that is requested or the data that has been provided.

http://en.wikipedia.org/wiki/
HTTP_header

MXML MXML is an XML-based user interface markup language fi rst introduced
by Macromedia in March 2004. Adobe (who acquired Macromedia in
December 2005) gives no offi cial meaning for the acronym, but some de-
velopers suggest it should stand for “Magic eXtensible Markup Language”
(which is a backronym). It’s likely that the name comes from the MX
suffi x given to Macromedia Studio products released in 2002 and 2004.
Application developers use MXML in combination with ActionScript to
develop Rich Internet applications.

http://en.wikipedia.org/wiki/
MXML

http://en.wikipedia.org/wiki/MXML
http://en.wikipedia.org/wiki/HTTP_header
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Application_framework
http://en.wikipedia.org/wiki/Html_form
http://en.wikipedia.org/wiki/Adobe_Flex
http://en.wikipedia.org/wiki/Flash_player
http://en.wikipedia.org/wiki/Filemaker_Pro

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Glossary of Terms | 32

Old No 7 Jack Daniel’s Tennessee whiskey (not to be confused with bourbon)
known for its square bottles and black label.

http://en.wikipedia.org/wiki/
Jack_Daniel’s#Product_
name

PBKDF2 PBKDF2 (Password-Based Key Derivation Function) is a key derivation
function that is part of RSA Laboratories’ Public-Key Cryptography Stan-
dards (PKCS) series.

http://en.wikipedia.org/wiki/
PBKDF2

Phishing is an attempt to criminally and fraudulently acquire sensitive information,
such as usernames, passwords and credit card details, by masquerading as
a trustworthy entity in an electronic communication.

http://en.wikipedia.org/wiki/
Phishing

PHP PHP is a widely used general-purpose scripting language that is especially
suited for web development and can be embedded into HTML. It gener-
ally runs on a web server, taking PHP code as its input and creating web
pages as output. It can be deployed on most web servers and on almost
every operating system and platform free of charge.

http://en.wikipedia.org/wiki/
Php

PKCS#5 In cryptography, PKCS refers to a group of Public Key Cryptography
Standards devised and published by RSA Security.

http://en.wikipedia.org/wiki/
PKCS

POST POST is an HTTP request method. POST submits data to be processed
(e.g. from an HTML form) to the identifi ed resource. The data is included
in the body of the request. This may result in the creation of a new re-
source or the updates of existing resources or both.

http://en.wikipedia.org/
wiki/Hypertext_Transfer_
Protocol#Request_meth-
ods

Proxy In computer networks, a proxy server is a server (a computer system
or an application program) which services the requests of its clients by
forwarding requests to other servers. A client connects to the proxy
server, requesting some service, such as a fi le, connection, web page,
or other resource, available from a different server. The proxy server
provides the resource by connecting to the specifi ed server and request-
ing the service on behalf of the client. A proxy server may optionally
alter the client’s request or the server’s response, and sometimes it may
serve the request without contacting the specifi ed server. In this case, it
would ‘cache’ the fi rst request to the remote server, so it could save the
information for later, and make everything as fast as possible.

http://en.wikipedia.org/wiki/
Reverse_proxy

Proxy Screening A term used in the context of this paper, referring to the practice of
inspecting and manipulating the proxy payload before passing it along. See
the article on Reverse Proxy.

http://en.wikipedia.org/wiki/
Reverse_proxy

REST REST strictly refers to a collection of network architecture principles
which outline how resources are defi ned and addressed. The term is of-
ten used in a looser sense to describe any simple interface that transmits
domain-specifi c data over HTTP without an additional messaging layer
such as SOAP or session tracking via HTTP cookies. It is also possible to
design simple XML+HTTP interfaces that do not conform to REST prin-
ciples, and instead follow a model of remote procedure call. FileMaker’s
Web Publishing Engine is not RESTful in the strict sense. See RPC.

http://en.wikipedia.org/wiki/
REST#REST_versus_RPC

http://en.wikipedia.org/wiki/REST#REST_versus_RPC
http://en.wikipedia.org/wiki/Reverse_proxy
http://en.wikipedia.org/wiki/Reverse_proxy
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
http://en.wikipedia.org/wiki/PKCS
http://en.wikipedia.org/wiki/Php
http://en.wikipedia.org/wiki/Phishing
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Jack_Daniel%E2%80%99s#Product_name

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Glossary of Terms | 33

RPC Remote procedure call (RPC) is a technology that allows a computer
program to cause a subroutine or procedure to execute in another
address space (commonly on another computer on a shared network)
without the programmer explicitly coding the details for this remote in-
teraction. That is, the programmer would write essentially the same code
whether the subroutine is local to the executing program, or remote.
When the software in question is written using object-oriented prin-
ciples, RPC may be referred to as remote invocation or remote method
invocation.

http://en.wikipedia.org/wiki/
Remote_procedure_call

RSA In cryptography, RSA is an algorithm for public-key cryptography. http://en.wikipedia.org/wiki/
Rsa

Salt In cryptography, a salt comprises random bits that are used as one of the
inputs to a key derivation function. The other input is usually a password
or passphrase. The output of the key derivation function is stored as the
encrypted version of the password. A salt can also be used as a key in
a cipher or other cryptographic algorithm. The key derivation function
typically uses a hash function.

http://en.wikipedia.org/wiki/
Salt_%28cryptography%29

Security by Design Secure by design, in software engineering, means that the software has
been designed from the ground up to be secure. Malicious practices are
taken for granted and care is taken to minimize impact when a security
vulnerability is discovered.

http://en.wikipedia.org/wiki/
Security_by_design

Security by Obscu-
rity

In cryptography and computer security, security through obscurity
(sometimes security by obscurity) is a controversial principle in security
engineering, which attempts to use secrecy (of design, implementation,
etc.) to provide security. A system relying on security through obscurity
may have theoretical or actual security vulnerabilities, but its owners or
designers believe that the fl aws are not known, and that attackers are
unlikely to fi nd them. The technique stands in contrast with security
by design, although many real-world projects include elements of both
strategies.

http://en.wikipedia.org/wiki/
Security_through_obscu-
rity

Self proxy The term self proxy is used in this paper in reference to PHP applications
which accept credentials from a user for the purposes of establishing
authentication, and then which subsequently rely on that established ses-
sion validity to subsequently act on that user’s behalf with stored system
credentials.

na

Session (general) In computer science, in particular networking, a session is a semi-perma-
nent interactive information exchange, also known as a dialogue, a con-
versation or a meeting, between two or more communicating devices, or
between a computer and user (see Login session). A session is set up or
established at a certain point in time, and torn down at a later point in
time. An established communication session may involve more than one
message in each direction. A session is typically, but not always, stateful,
meaning that at least one of the communicating parts need to save infor-
mation about the session history in order to be able to communicate, as
opposed to stateless communication, where the communication consists
of independent requests with responses.

http://en.wikipedia.org/wiki/
Session_%28computer_sci-
ence%29

http://en.wikipedia.org/wiki/Session_%28computer_science%29
http://en.wikipedia.org/wiki/Security_through_obscurity
http://en.wikipedia.org/wiki/Security_by_design
http://en.wikipedia.org/wiki/Salt_%28cryptography%29
http://en.wikipedia.org/wiki/Rsa
http://en.wikipedia.org/wiki/Remote_procedure_call

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Glossary of Terms | 34

Session (PHP) Session support in PHP consists of a way to preserve certain data across
subsequent accesses. This enables you to build more customized applica-
tions and increase the appeal of your web site. A visitor accessing your
web site is assigned a unique id, the so-called session id. This is either
stored in a cookie on the user side or is propagated in the URL.

http://us3.php.net/manual/
en/intro.session.php

Session Fixation
(PHP)

Session fi xation attacks attempt to exploit the vulnerability of a system
which allows one person to fi xate (set) another person’s session identi-
fi er (SID). Most session fi xation attacks are web based, and most rely
on session identifi ers being accepted from URLs (query string) or POST
data.

http://en.wikipedia.org/wiki/
Session_fi xation

Session Functions
(PHP)

See Session (PHP) na

Session Hijacking
(PHP)

The term session hijacking refers to the exploitation of a valid computer
session - sometimes also called a session key - to gain unauthorized ac-
cess to information or services in a computer system. In particular, it is
used to refer to the theft of a magic cookie used to authenticate a user
to a remote server. It has particular relevance to web developers, as the
HTTP cookies used to maintain a session on many web sites can be easily
stolen by an attacker using an intermediary computer or with access to
the saved cookies on the victim’s computer (see HTTP cookie theft).

http://en.wikipedia.org/wiki/
Session_hijacking

Session ID (PHP) See Session (PHP) na

Shared Object Local Shared Object (LSO), sometimes known as fl ash cookies, is a
cookie-like data entity used by Adobe Flash Player. The player allows web
content to read and write LSO data to the computer’s local drive on a
per-domain basis. The Local Shared Objects are available in Flash Players
starting from version 6. This technology permits web sites to preserve
session state and record user data and behavior.

http://en.wikipedia.org/wiki/
Local_Shared_Object

Signature Type signature is a term that is used in computer programming. A type
signature defi nes the inputs and outputs for a function or method. A
type signature includes at least the function name and the number of its
parameters. In some programming languages, it may also specify the func-
tion’s return type or the types of its parameters.

http://en.wikipedia.org/wiki/
Type_signature

Social Engineering Social engineering is a collection of techniques used to manipulate people
into performing actions or divulging confi dential information. While
similar to a confi dence trick or simple fraud, the term typically applies
to trickery for information gathering or computer system access and in
most cases the attacker never comes face-to-face with the victim.

http://en.wikipedia.org/wiki/
Social_engineering_
%28security%29

SSL Hypertext Transfer Protocol over Secure Socket Layer or https is a URI
scheme used to indicate a secure HTTP connection. It is syntactically
identical to the http:// scheme normally used for accessing resources
using HTTP. Using an https: URL indicates that HTTP is to be used, but
with a different default TCP port (443) and an additional encryption/au-
thentication layer between the HTTP and TCP. This system was designed
by Netscape Communications Corporation to provide authentication and
encrypted communication and is widely used on the World Wide Web
for security-sensitive communication such as payment transactions and
corporate logons.

http://en.wikipedia.org/wiki/
Https

http://en.wikipedia.org/wiki/Https
http://en.wikipedia.org/wiki/Social_engineering_%28security%29
http://en.wikipedia.org/wiki/Type_signature
http://en.wikipedia.org/wiki/Local_Shared_Object
http://en.wikipedia.org/wiki/Session_hijacking
http://en.wikipedia.org/wiki/Session_fixation
http://us3.php.net/manual/en/intro.session.php

Authenticating FileMaker ® / Adobe® Flex™ Using a PHP Proxy Glossary of Terms | 35

SWF The SWF fi le format delivers vector graphics, text, video, and sound
over the Internet and is supported by Adobe® Flash® Player and Adobe
AIR™ software. The SWF fi le format is available as an open specifi cation
to create products and technology that implement the specifi cation. SWF
9 introduces the ActionScript™ 3.0 language and virtual machine.

http://www.adobe.com/
devnet/swf/

WPE The Web Publishing Engine is a component of FileMaker Server that
provides the Custom Web Publishing services for databases hosted by
FileMaker Server.

http://fi lemaker.com/
downloads/pdf/fms9_get-
ting_started_en.pdf

http://filemaker.com/downloads/pdf/fms9_getting_started_en.pdf
http://www.adobe.com/devnet/swf/

	Title Page
	Table of Contents
	Abstract
	The Security Landscape
	Preparing for a Secure Web App
	Basic Access HTTP Authentication
	FlexFM
	Where is your code executed?
	Handling credentials during as user session
	PHP Sessions
	FMProxy
	Proxy Screening
	Examples
	HTML Form Demo
	Flex Demo
	Flex Source Code
	Conclusion
	Glossary of Terms

